Data-dependent Hashing for Nearest Neighbor Search

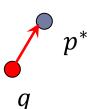
Alex Andoni

(Columbia University)

Based on joint work with: Piotr Indyk, Huy Nguyen, Ilya Razenshteyn

Nearest Neighbor Search (NNS)

- Preprocess: a set P of points
- Query: given a query point q, report a point $p^* \in P$ with the smallest distance to q



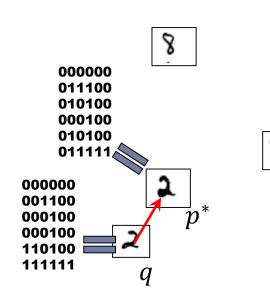
Motivation

Generic setup:

- Points model objects (e.g. images)
- Distance models (dis)similarity measure
- Application areas:
 - machine learning: k-NN rule
 - speech/image/video/music recognition, vector quantization, bioinformatics, etc...

Distances:

- Hamming, Euclidean,
 edit distance, earthmover distance, etc...
- Core primitive: closest pair, clustering, etc...



Curse of Dimensionality

lacktriangleright All exact algorithms degrade rapidly with the dimension d

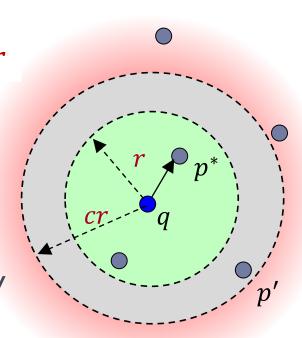
Algorithm	Query time	Space
Full indexing	$(d \cdot \log n)^{O(1)}$	$n^{O(d)}$ (Voronoi diagram size)
No indexing –	$O(n \cdot d)$	$O(n \cdot d)$
linear scan		

Approximate NNS

r-near neighbor: given a query point q, report a point $p' \in P$ s.t. $||p' - q|| \le cr$

> as long as there is some point within distance r

- Practice: use for exact NNS
 - Filtering: gives a set of candidates (hopefully small)



NNS algorithms

Exponential dependence on dimension

[Arya-Mount'93], [Clarkson'94], [Arya-Mount-Netanyahu-Silverman-We'98], [Kleinberg'97], [Har-Peled'02], [Arya-Fonseca-Mount'11],...

Linear/poly dependence on dimension

▶ [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98, '01], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06], [A.-Indyk'06], [A.-Indyk-Nguyen-Razenshteyn'14], [A.-Razenshteyn'15], [Pagh'16],[Laarhoven'16],...

Locality-Sensitive Hashing

[Indyk-Motwani'98]

Random hash function h on R^d satisfying:

• for close pair: when $||q - p|| \le r$

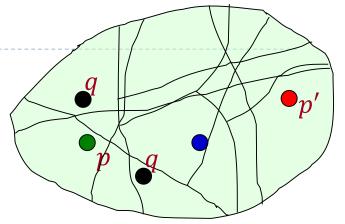
$$P_1 = \Pr[h(q) = h(p)]$$
 is "not-so-small"

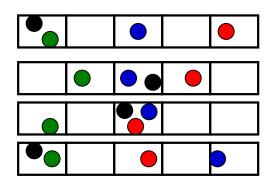
• for far pair: when ||q - p'|| > cr

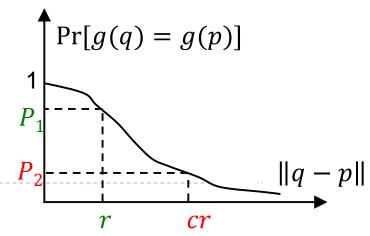
$$P_2 = \Pr[h(q) = h(p')]$$
 is "small"

Use several hash tables:

$$n^{\rho}$$
, where $\rho = \frac{\log 1/P_1}{\log 1/P_2}$







LSH Algorithms

Hamming space

Space	Time	Exponent	c = 2	Reference
		·		
$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]
		$\rho \ge 1/c$		[MNP'06, OWZ'II]

Euclidean space

$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98, DIIM'04]
		$\rho \approx 1/c^2$	$\rho = 1/4$	[Al'06]
		$\rho \ge 1/c^2$		[MNP'06, OWZ'11]

LSH is tight... what's next?

Lower bounds (cell probe)
[A.-Indyk-Patrascu'06,
Panigrahy-Talwar-Wieder'08,'10,
Kapralov-Panigrahy'12]

Space-time trade-offs [Panigrahy'06, A.-Indyk'06]

Datasets with additional structure [Clarkson'99, Karger-Ruhl'02, Krauthgamer-Lee'04, Beygelzimer-Kakade-Langford'06, Indyk-Naor'07, Dasgupta-Sinha'13, Abdullah-A.-Krauthgamer-Kannan'14,...]

But are we really done with basic NNS algorithms?

Beyond Locality Sensitive Hashing

Hamming space

Space	Time	Exponent	c=2	Reference
$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]
		$\rho \ge 1/c$		[MNP'06, OWZ'11]
$n^{1+ ho}$	$n^{ ho}$	complicated	$\rho = 1/2$ -	– <i>ε</i> [AINR'14]
		$\rho \approx \frac{1}{2c - 1}$	$\rho = 1/3$	[AR'15]

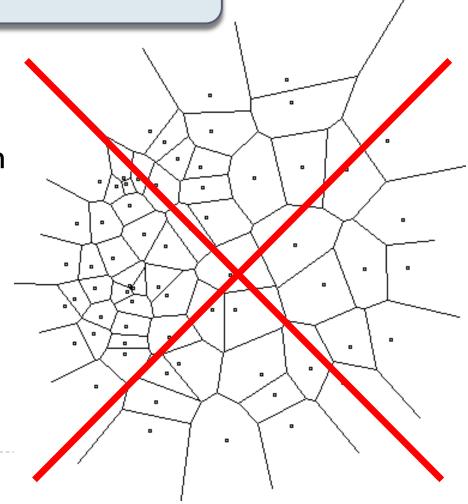
Euclidean space

$n^{1+\rho}$	n^{ρ}	$\rho \approx 1/c^2$	$\rho = 1/4$	[Al'06]
		$\rho \ge 1/c^2$		[MNP'06, OWZ'II]
$n^{1+\rho}$	$n^{ ho}$	complicated	$\rho = 1/4$	– <i>ε</i> [AINR'14]
		$\rho \approx \frac{1}{2c^2 - 1}$	$\rho = 1/7$	[AR'15]

New approach?

Data-dependent hashing

- A random hash function, chosen after seeing the given dataset
- Efficiently computable



Construction of hash function

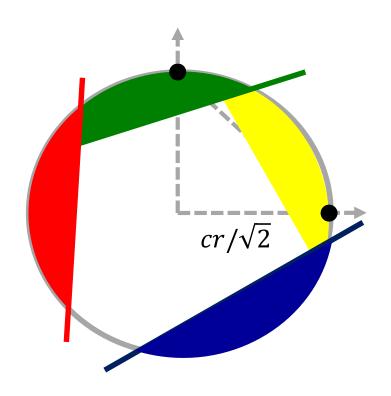
- Two components:
 - Nice geometric structure

Reduction to such structure data-dependent

Like a (weak) "regularity lemma" for a set of points

Nice geometric structure: average-case

- ▶ Think: random dataset on a sphere
 - vectors perpendicular to each other
 - ▶ s.t. random points at distance $\approx cr$
- Lemma: $\rho = \frac{1}{2c^2 1}$
 - via Cap Carving

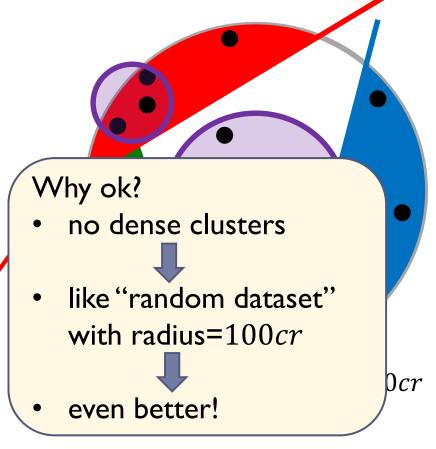


Reduction to nice structure

▶ Idea:

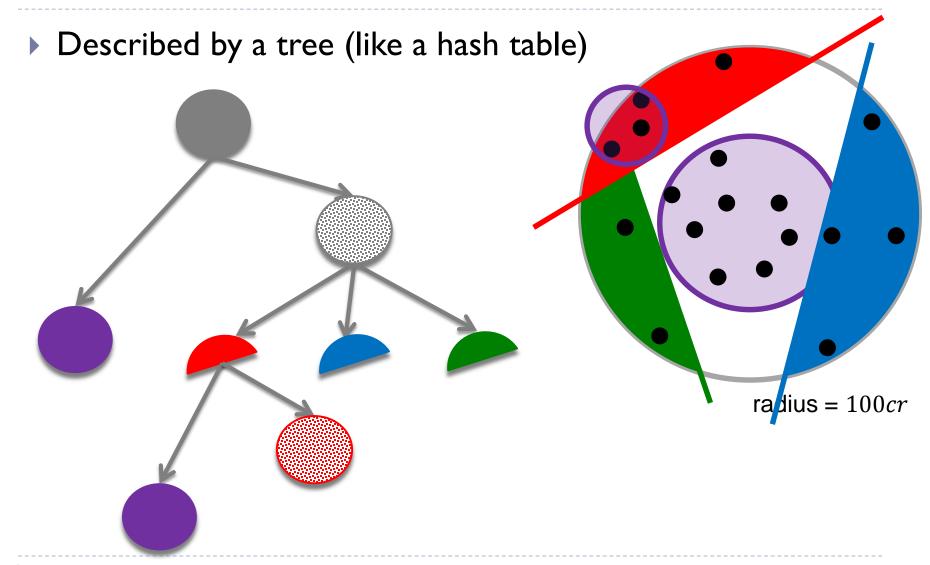
iteratively decrease the radius of minimum enclosing ball

- Algorithm:
 - find dense clusters
 - with smaller radius
 - large fraction of points
 - recurse on dense clusters
 - apply cap carving on the rest
 - recurse on each "cap"
 - eg, dense clusters might reappear



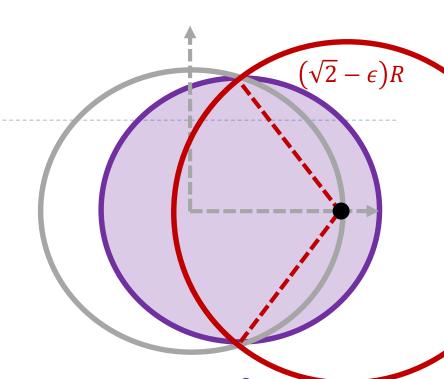
radius = 99cr

Hash function



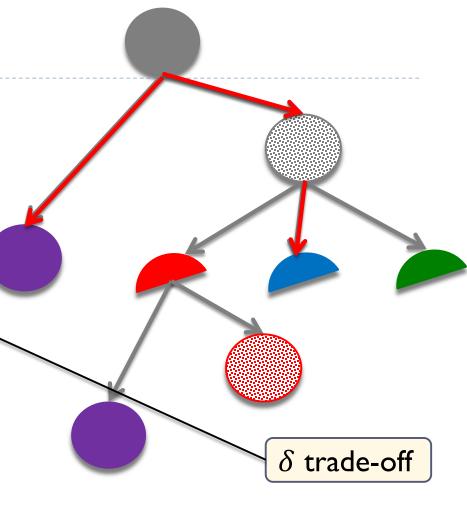
Dense clusters

- Current dataset: radius R
- A dense cluster:
 - Contains $n^{1-\delta}$ points
 - Smaller radius: $(1 \Omega(\epsilon^2))R$
- After we remove all cluster's:
 - For any point on the surface, there are at most $n^{1-\delta}$ points within distance $(\sqrt{2} \epsilon)R$ ϵ trade-off
 - The other points are essentially orthogonal
- ▶ When applying Cap Carving with parameters (P_1, P_2) :
 - Empirical number of far pts colliding with query: $nP_2 + n^{1-\delta}$
 - As long as $nP_2 \gg n^{1-\delta}$, the "impurity" doesn't matter!



Tree recap

- During query:
 - Recurse in all clusters
 - Just in one bucket in CapCarving
- Will look in >1 leaf!
- How much branching?
 - Claim: at most $(n^{\delta} + 1)^{O(1/\epsilon^2)}$
 - ▶ Each time we branch
 - ightharpoonup at most n^{δ} clusters (+1)
 - \triangleright a cluster reduces radius by $\Omega(\epsilon^2)$
 - cluster-depth at most $100/\Omega(\epsilon^2)$
- Progress in 2 ways:
 - Clusters reduce radius
 - \triangleright CapCarving nodes reduce the # of far points (empirical P_2)
- A tree succeeds with probability $\geq n^{-\frac{1}{2c^2-1}-o(1)}$



Beyond "Beyond LSH"

- Practice: often optimize partition to your dataset
 - ▶ PCA-tree, spectral hashing, etc [S91, McN01, VKD09, WTF08,...]
 - no guarantees (performance or correctness)
- ▶ Theory: assume special structure in the dataset
 - low intrinsic dimension [KR'02, KL'04, BKL'06, IN'07, DS'13,...]
 - structure + noise [Abdullah-A.-Krauthgamer-Kannan'14]

Data-dependent hashing helps even when no a priori structure!

Data-dependent hashing wrap-up

- Dynamicity?
 - Dynamization techniques [Overmars-van Leeuwen'81]
- Better bounds?
 - For dimension $d = O(\log n)$, can get better $\rho!$ [Laarhoven' [6]
 - For $d > \log^{1+\delta} n$: our ρ is optimal even for data-dependent hashing! [A-Razenshteyn'??]:
 - in the right formalization (to rule out Voronoi diagram):
 - description complexity of the hash function is $n^{1-\Omega(1)}$
- Practical variant [A-Indyk-Laarhoven-Razenshteyn-Schmidt' I 5]
- NNS for ℓ_{∞}
 - [Indyk'98] gets approximation $O(\log \log d)$ (poly space, sublinear qt)
 - ▶ Cf., ℓ_{∞} has no non-trivial sketch!
 - Some matching lower bounds in the relevant model [ACP'08, KP'12]
 - Can be thought of as data-dependent hashing
- ► NNS for any norm (eg, matrix norms, EMD) ?