
Data-dependent Hashing for

Nearest Neighbor Search

Alex Andoni
(Columbia University)

Based on joint work with: Piotr Indyk, Huy
Nguyen, Ilya Razenshteyn



Nearest Neighbor Search (NNS)

 Preprocess: a set 𝑃 of points

 Query: given a query point 𝑞, report a 

point 𝑝∗ ∈ 𝑃 with the smallest distance 

to 𝑞

𝑞

𝑝∗

2



Motivation

 Generic setup:

 Points model objects (e.g. images)

 Distance models (dis)similarity measure

 Application areas: 

 machine learning: k-NN rule

 speech/image/video/music recognition, vector 

quantization, bioinformatics, etc…

 Distances:

 Hamming, Euclidean,

edit distance, earthmover distance, etc…

 Core primitive: closest pair, clustering, etc…

000000

011100

010100

000100

010100

011111

000000

001100

000100

000100

110100

111111 𝑞

𝑝∗

3



Curse of Dimensionality

 All exact algorithms degrade rapidly with the 

dimension 𝑑

4

Algorithm Query time Space

Full indexing 𝑑 ⋅ log 𝑛 𝑂 1 𝑛𝑂(𝑑) (Voronoi diagram size)

No indexing –

linear scan

𝑂(𝑛 ⋅ 𝑑) 𝑂(𝑛 ⋅ 𝑑)



Approximate NNS

 𝑟-near neighbor: given a query point 𝑞, 

report a point 𝑝′ ∈ 𝑃 s.t. 𝑝′ − 𝑞 ≤ 𝑟

 as long as there is some point within 

distance 𝑟

 Practice: use for exact NNS

 Filtering: gives a set of candidates (hopefully 

small)

𝑟

𝑞

𝑝∗

𝑝′

𝑐𝑟

𝑐𝑟

5



NNS algorithms

6

Exponential dependence on dimension

 [Arya-Mount’93], [Clarkson’94], [Arya-Mount-Netanyahu-Silverman-

We’98], [Kleinberg’97], [Har-Peled’02],[Arya-Fonseca-Mount’11],…

Linear/poly dependence on dimension

 [Kushilevitz-Ostrovsky-Rabani’98], [Indyk-Motwani’98], [Indyk’98, ‘01], 

[Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-Immorlica-Indyk-

Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-Chazelle’06], 

[A.-Indyk’06], [A.-Indyk-Nguyen-Razenshteyn’14], [A.-Razenshteyn’15], 

[Pagh’16],[Laarhoven’16],…



Locality-Sensitive Hashing

Random hash function ℎ on 𝑅𝑑

satisfying:

 for close pair: when 𝑞 − 𝑝 ≤ 𝑟

Pr[ℎ(𝑞) = ℎ(𝑝)] is “high” 

 for far pair: when 𝑞 − 𝑝′ > 𝑐𝑟

Pr[ℎ(𝑞) = ℎ(𝑝′)] is “small”

Use several hash tables:

𝑞

𝑝

𝑞 − 𝑝

Pr[𝑔(𝑞) = 𝑔(𝑝)]

𝑟 𝑐𝑟

1

𝑃1

𝑃2

𝑛𝜌, where

[Indyk-Motwani’98]

𝑞

“not-so-small”𝑃1 =

𝑃2 =

𝜌 =
log 1/𝑃1
log 1/𝑃2

7

𝑝′



LSH Algorithms

8

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2 [IM’98]

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2 [IM’98, DIIM’04]

Hamming

space

Euclidean

space

𝜌 ≥ 1/𝑐 [MNP’06, OWZ’11]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

𝜌 ≈ 1/𝑐2 𝜌 = 1/4 [AI’06]



LSH is tight… what’s next?

9

But are we really done with basic NNS algorithms?

Lower bounds (cell probe)
[A.-Indyk-Patrascu’06, 

Panigrahy-Talwar-Wieder’08,‘10, 

Kapralov-Panigrahy’12]

Space-time trade-offs
[Panigrahy’06,

A.-Indyk’06]

Datasets with additional structure
[Clarkson’99,

Karger-Ruhl’02,

Krauthgamer-Lee’04,

Beygelzimer-Kakade-Langford’06,

Indyk-Naor’07,

Dasgupta-Sinha’13,  

Abdullah-A.-Krauthgamer-Kannan’14,…]



Beyond Locality Sensitive Hashing

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 1/2 [IM’98]

𝑛1+𝜌 𝑛𝜌 𝜌 ≈ 1/𝑐2 𝜌 = 1/4 [AI’06]

Hamming

space

Euclidean

space

𝜌 ≥ 1/𝑐 [MNP’06, OWZ’11]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

𝜌 ≈
1

2𝑐 − 1

𝜌 = 1/3 [AR’15]

𝜌 ≈
1

2𝑐2 − 1

𝜌 = 1/7 [AR’15]

LSH

LSH

10

𝑛1+𝜌 𝑛𝜌 complicated 𝜌 = 1/2 − 𝜖 [AINR’14]

𝑛1+𝜌 𝑛𝜌 complicated 𝜌 = 1/4 − 𝜖 [AINR’14]



New approach?

11

 A random hash function, 

chosen after seeing the given 

dataset

 Efficiently computable

Data-dependent hashing



Construction of hash function

12

 Two components:

 Nice geometric structure

 Reduction to such structure

 Like a (weak) “regularity lemma” for a set of points

has better LSH

data-dependent



Nice geometric structure: average-case

13

 Think: random dataset on a sphere

 vectors perpendicular to each other

 s.t. random points at distance ≈ 𝑐𝑟

 Lemma: 𝜌 =
1

2𝑐2−1

 via Cap Carving
𝑐𝑟

𝑐𝑟/ 2



Reduction to nice structure

14

 Idea: 

iteratively decrease the radius of 

minimum enclosing ball

 Algorithm:

 find dense clusters

 with smaller radius

 large fraction of points

 recurse on dense clusters

 apply cap carving on the rest

 recurse on each “cap”

 eg, dense clusters might reappear
radius = 99𝑐𝑟

*picture not to scale & dimension

radius = 100𝑐𝑟

Why ok?Why ok?

• no dense clusters

• like “random dataset” 

with radius=100𝑐𝑟

• even better!



Hash function

15

 Described by a tree (like a hash table)

radius = 100𝑐𝑟

*picture not to scale&dimension



Dense clusters

 Current dataset: radius 𝑅

 A dense cluster:

 Contains 𝑛1−𝛿 points

 Smaller radius: 1 − Ω 𝜖2 𝑅

 After we remove all clusters:

 For any point on the surface, there are at most 𝑛1−𝛿 points 

within distance 2 − 𝜖 𝑅

 The other points are essentially orthogonal !

 When applying Cap Carving with parameters (𝑃1, 𝑃2):

 Empirical number of far pts colliding with query: 𝑛𝑃2 + 𝑛1−𝛿

 As long as 𝑛𝑃2 ≫ 𝑛1−𝛿, the “impurity” doesn’t matter!

2 − 𝜖 𝑅

𝜖 trade-off 𝛿 trade-off

?



Tree recap

17

 During query:
 Recurse in all clusters

 Just in one bucket in CapCarving

 Will look in >1 leaf!

 How much branching?

 Claim: at most 𝑛𝛿 + 1
𝑂(1/𝜖2)

 Each time we branch

 at most 𝑛𝛿 clusters (+1)

 a cluster reduces radius by Ω(𝜖2)
 cluster-depth at most 100/Ω 𝜖2

 Progress in 2 ways:
 Clusters reduce radius

 CapCarving nodes reduce the # of far points (empirical 𝑃2)

 A tree succeeds with probability ≥ 𝑛
−

1

2𝑐2−1
−𝑜(1)

𝛿 trade-off



Beyond “Beyond LSH”

18

 Practice: often optimize partition to your dataset

 PCA-tree, spectral hashing, etc [S91, McN01,VKD09, WTF08,…]

 no guarantees (performance or correctness)

 Theory: assume special structure in the dataset

 low intrinsic dimension [KR’02, KL’04, BKL’06, IN’07, DS’13,…]

 structure + noise [Abdullah-A.-Krauthgamer-Kannan’14]

Data-dependent hashing helps even when

no a priori structure ! 



Data-dependent hashing wrap-up

19

 Dynamicity?
 Dynamization techniques [Overmars-van Leeuwen’81]

 Better bounds?
 For dimension 𝑑 = 𝑂(log𝑛), can get better 𝜌! [Laarhoven’16]

 For 𝑑 > log1+𝛿 𝑛: our 𝜌 is optimal even for data-dependent hashing! [A-
Razenshteyn’??]: 
 in the right formalization (to rule out  Voronoi diagram):

 description complexity of the hash function is 𝑛1−Ω(1)

 Practical variant [A-Indyk-Laarhoven-Razenshteyn-Schmidt’15]

 NNS for ℓ∞
 [Indyk’98] gets approximation 𝑂(log log 𝑑) (poly space, sublinear qt)

 Cf., ℓ∞ has no non-trivial sketch!

 Some matching lower bounds in the relevant model [ACP’08, KP’12]

 Can be thought of as data-dependent hashing

 NNS for any norm (eg, matrix norms, EMD) ?


